
www.manaraa.com

UNLV Theses, Dissertations, Professional Papers, and Capstones

5-2011

Topic detection and tracking using hidden Markov models Topic detection and tracking using hidden Markov models

Aditya S. Tatavarty
University of Nevada, Las Vegas

Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations

 Part of the Theory and Algorithms Commons

Repository Citation Repository Citation
Tatavarty, Aditya S., "Topic detection and tracking using hidden Markov models" (2011). UNLV Theses,
Dissertations, Professional Papers, and Capstones. 907.
https://digitalscholarship.unlv.edu/thesesdissertations/907

This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV
with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the
copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from
the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/
or on the work itself.

This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by
an authorized administrator of Digital Scholarship@UNLV. For more information, please contact
digitalscholarship@unlv.edu.

http://library.unlv.edu/
http://library.unlv.edu/
https://digitalscholarship.unlv.edu/thesesdissertations
https://digitalscholarship.unlv.edu/thesesdissertations?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F907&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F907&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.unlv.edu/thesesdissertations/907?utm_source=digitalscholarship.unlv.edu%2Fthesesdissertations%2F907&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalscholarship@unlv.edu

www.manaraa.com

TOPIC DETECTION AND TRACKING USING HIDDEN MARKOV MODELS

by

Aditya Sowmya Tatavarty

Bachelor of Engineering in Computer Science and Engineering
Jawaharlal Nehru State University, India

May 2009

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Computer Science

School of Computer Science
Howard R. Hughes College of Engineering

Graduate College
University of Nevada, Las Vegas

May 2011

www.manaraa.com

Copyright by Aditya Sowmya Tatavarty 2011

All Rights Reserved

www.manaraa.com

ii

The Graduate College

We recommend the thesis prepared under our supervision by

Aditya Sowmya Tatavarty

entitled

Topic Detection and Tracking Using Hidden Markov Models

be accepted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

School of Computer Science

Kazem Taghva, Committee Chair

Ajoy K. Datta, Committee Member

Laxmi P. Gewali, Committee Member

Venkatesan Muthukumar, Graduate Faculty Representative

Ronald Smith, Ph. D., Vice President for Research and Graduate Studies

and Dean of the Graduate College

May 2011

www.manaraa.com

iii

ABSTRACT

Topic Detection and Tracking Using
Hidden Markov Models

by

 Aditya Sowmya Tatavarty

Dr. Kazem Taghva, Examination Committee Chair

Professor, Dept of Computer Science
University of Nevada, Las Vegas

There is a continuous progress in automatic recording of broadcast

speech using speech recognition. With the increasing use of this

technology, a new source of data is added to the pool of information

available over web. This has increased the need to categorize the

resulting text, based on their topic for the purpose of information

retrieval.

 In this thesis we present an approach to automatically assign a

topic or track a change of topic in a stream of input data. Our approach

is based on the use of Hidden Markov Models and language processing

techniques. We consider input text as stream of words and use Hidden

Markov Model to assign the most appropriate topic to the text. Then we

process this output to identify the topic boundaries. The main focus of

this thesis is to automatically assign a topic to specific story.

www.manaraa.com

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my heartfelt gratitude to my

advisor Dr. Kazem Taghva for his tremedous support and invaluable

guidance throughout this thesis work. I express my sincere thanks to

Dr. Ajoy K. Datta for his help during my MS degree and also for being my

committee member. I extend my gratitude to Dr. Laxmi P. Gewali and

Dr. Venkatesan Muthukumar for agreeing to be a part of my committee.

I am grateful to the staff of the School of Computer Science for being so

helpful to us.

 I am always obligated to God, my parents, and sisters for their love

and support, and their encouragement to strive for the best. Last but

not the least, I thank my friends for their support in the successful

completion of this work.

www.manaraa.com

v

TABLE OF CONTENTS
ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF FIGURES .. vi

CHAPTER 1 INTRODUCTION ... 1

1.1 Thesis Overview .. 2

CHAPTER 2 BACKGROUND ... 4

2.1 Hidden Markov Models ... 5

2.1.1 Elements of an HMM .. 6

2.2 Problems of Hidden Markov Model .. 10

2.2.1 Evaluation .. 12

2.2.2 Decoding .. 17

2.2.3 Training.. 19

2.3 Example of Hidden Markov Model ... 23

CHAPTER 3 TOPIC DETECTION AND TRACKING USING HIDDEN
MARKOV MODEL .. 25

3.1 Building an HMM from data.. 25

3.2. Finding the most likely state sequence 30

3.3. Exploring performance on actual datasets 31

CHAPTER 4 IMPLEMENTATION ... 32

4.1 Documents Preprocessing ... 32

4.2 Training Phase.. 37

4.3. Testing phase .. 42

4.4 Representation of TDT HMM Model ... 45

4.4.1 HMM Representation on the disk file 47

CHAPTER 5 DATA AND EXPERIMENTAL RESULTS 49

5.1. Precision and Recall... 50

CHAPTER 6 CONCLUSION AND FUTURE WORK 52

BIBLIOGRAGHY .. 53

VITA .. 55

www.manaraa.com

vi

LIST OF FIGURES

Figure 1 Operations for computing the forward variable αj (t + 1) 13

Figure 2 αj(t) in terms of a lattice of observations and states 14

Figure 3 Operations for computing the backward variable 16

Figure 4 Operations for computing .. 22

Figure 5 HMM-Coin Tossing Experiment .. 23

Figure 6 Reading Training data into variables 40

Figure 7 Calculating Probabilities. ... 41

Figure 8 Model file ... 41

Figure 9 Viterbi Algorithm-Initialization-code snippet. 43

Figure 10 Viterbi Algorithm Compute Step ... 44

Figure 11 Viterbi Algorithm-termination code snippet 44

Figure 12 screen shot of tagged sequence file 45

Figure 13 Graphical representation of TDT HMM 46

Figure 14 Model file for TDT HMM ... 48

www.manaraa.com

1

CHAPTER 1

INTRODUCTION

The explosive growth and dynamic environment of digital information is

creating new challenges in the field of Information Retrieval. One of

them is devising a scheme to track and detect dynamic information, such

as, news, using Information Retrieval techniques. There are many

Information Retrieval systems publicly available that aim to help users

aware of the most current news on the Web. For example, Google News

offers tracking services in which users receive an email when new

articles about their subject of interest become available. Such services

track information updates at the document level. Information

professionals such as journalists often rely on tools such as Rich Site

Summary (RSS) news feeds to keep track of the most current information

and events. Thus there is an increasing need for automatic techniques

to analyze, present, and visualize news to users in a meaningful and

efficient manner.

 Constant advance in science and technology makes collection of

data and storage much easier and very inexpensive than ever before.

Also, there is a continuous progress in automatic recording of broadcast

speech using speech recognition. This results in enormous increase in

the size of data available. This has increased the need to categorize the

dataset available based on their topic for the purpose of information

retrieval. Topic Detection and Tracking systems are mainly used to

www.manaraa.com

2

discover the structure of topics in non-fragmented streams of news

reports as they become available across multiple media.

 Dynamic information is the main topic dealt in Topic Detection

and Tracking (TDT). Research in this area mainly aims at effectively

retrieving and organizing broadcast news (speech) and newswire stories

(text) into groups of events. Different methods have been proposed for

classification of text into predefined categories. In this thesis, we use

Hidden Markov models for Text Detection and Tracking.

1.1 Thesis Overview

Hidden Markov Models are used in Text Detection and Tracking by

splitting a stream of data into stories and assigning an appropriate topic

to each of these stories. The process involved is as follows. Input to our

model is an unlabeled sequence of words. Output is a sequence of words

labeled with the most appropriate topic. This output is processed to

identify the topic boundaries. In our experiments, we integrate

information about text into our model, and use it to classify given text

into one of four categories: news, commercials, sitcoms, or soaps.

 The remainder of the report is organized as follows. Section 2

contains a brief description of Hidden Markov Models and text detection

and tracking systems. Section 3 describes the application of Hidden

Markov Models for Text Detection and Tracking. This section also

includes an explanation of the steps involved in implementing this model

in Section 4. These steps include an explanation of preprocessing steps

www.manaraa.com

3

involved in converted the stream of input into required input format,

tagging the input stream with the most appropriate boundaries, and

identifying the topic boundaries. Experimental results are reported in

Section 5. In Section 6, we make some concluding remarks and shed

some light on possible future work.

www.manaraa.com

4

CHAPTER 2

BACKGROUND

Data Mining is defined as the process of extracting unknown but useful

information from databases. In recent years, data mining not only

attracted business organizations, but also has been widely used in the

information technology industry [1]. After the Internet and Web were

made accessible for everything and to everyone, we can now reach large

amounts of data. However, to make the date useful for any practical

purpose, we need to be able to parse the data to extract some meaningful

knowledge. This is precisely where data mining plays a huge role. There

are many well-known data mining schemes, Topic Detection and

Tracking (TDT) is one of them. This thesis deals with TDT using

supervised machine learning technique.

 Machine Learning is defined as “the ability of a machine to

improve its performance based on previous results.” [2] In other words,

it is a system capable of learning from experience and analytical

observation, which results in continuous self improvement, thereby

offering increased efficiency and effectiveness. In general, there are four

different types of machine learning techniques. They are:

1. Supervised learning,

2. Unsupervised learning,

3. Semi-supervised learning, and

4. Reinforcement learning. [3]

www.manaraa.com

5

This thesis deals with topic detection and tracking using supervised

learning technique. Supervised learning is a machine learning

technique that learns from a training data set. A training data set

consists of input objects and categories they belong to. Assigning

categories to input objects is carried out manually by an expert. Given

an unknown object, supervised learning technique must be able to

predict an appropriate category based on prior training.

 Topic Detection and Tracking is a fairly new area of research in

Information Retrieval. In this thesis, we use Hidden Markov Models to

implement Topic Detection and Tracking. Text features are extracted

and classified with Hidden Markov Model (HMM). Hidden Markov Model

(HMM) is a popular technique widely used in speech recognition. The

fundamental nature of HMM is to construct a model that explains the

occurrence of observations (symbols) and use it to identify other

observations sequences. However, to date, its applications have been

focused on crypt-analysis and speech recognition. In our work, we

extended it to topic detection and tracking.

2.1 Hidden Markov Models

Before defining Hidden Markov Model (HMM), we introduce the concept

of Markov Chain, also referred to as an observed Markov Model.

 A Markov Chain is a particular case of a weighted automaton in

which the input sequence uniquely determines the states through which

the automaton traverses. Markov chains are sequences of random

www.manaraa.com

6

variables in which the future variable is determined by the present

variable, but is independent of the way in which the present state is

reached from its predecessors [8].

 Hidden Markov Models (HMMs) separate the observations from

the states; the observations (outputs) are visible, but the state sequences

that led to them are hidden. It is “Markov” because the next state is

determined solely from the current state. It is “Hidden” because the

actual state sequences are hidden [10].

Hidden Markov Models can be defined as follows:

“A hidden Markov model (HMM) is a statistical Markov model in which

the system being modeled is assumed to be a Markov process with

unobserved (hidden) states.” [12]

 In this thesis, we used a discrete first order Hidden Markov

Model. As the observations of our Markov Model are characterized as

discrete symbols chosen from a fine alphabet, it is a discrete Markov

Model. We also assumed that transition probabilities depend only on the

previous state which makes it a first-order Markov model.

A set of five elements can be used to describe an HMM.

In the following section, we will define the elements of an HMM and their

notations.

2.1.1 Elements of an HMM

We can define an HMM as a 5-tuple (S, V, π, A, B).

www.manaraa.com

7

We define Q to be a fixed state sequence of length T, and the

corresponding observations O:

Q = q1, q2, · · · , qT

O = o1, o2, · · · , oT

T - Number of observations in the sequence

HMM Notation: λ = (A, B, π)

 N: Number of states in the Model.

There is a finite set of states in a model. The states in an HMM are

hidden, but there is a lot of significance to these states in defining

an HMM. We denote the individual states as S1, S2, S3, …, Sn.

S = { S1, S2, S3, … , Sn}.

 M: Number of distinct symbols observable in states.

These symbols correspond to the observable output of the system

that is being modeled. We denote the individual states as v1, v2, v3,

…, vM.

V = { v1, v2, v3, …, vM}.

 A: State transition probability distribution

A is transition array that store the state transition probabilities.

A={aij }, where aij stores the probability of state j following state i.

 aij= P(qt=Sj/qt-1=Si), i ≥1 and j ≥ N

aij, the probability of moving from state Si to Sj at time t

www.manaraa.com

8

At each time t, a new state is entered which depends on the

transition probability distribution of the state at time t – 1.

Transition to the same state is also possible. An important point

about transition probabilities is that they are independent of time;

the probability of moving from state Si to state Sj is independent of

time t.

 B: Observation symbol probability distribution

B = {bj(k)} is the output symbol array that stores the probability of

an observation Vk being produced from the state j, independent of

time t. Observation symbol probability or Output Emission

Probability estimates are also independent of time. The probability

of a state emitting a particular output symbol does not vary with

time.

 B = { bj(k) } , bi(k) = P(xt = vk/qt = Sj) 1≤ j ≤ N and 1≤ k ≤ M

 bi(k), the probability of emitting symbol vk, when state Sj is entered

at time t.

After each transition is made, a symbol is output based on

the output probability distribution, which depends only on the

current state.

 π: Initial state distribution

www.manaraa.com

9

π = {Πi} is the initial probability array that stores the probability of

the system starting at state i in an observation. It is the

probability of state Si being the start state in an observation

sequence.

π = { Πi }, Πi = P (q1 = Si), 1≤ i ≤ N

Πi, the probability of being in state I at time t=1

A complete specification of an HMM consists of the above five

elements, {S, V, π, A, B}. We usually use a compact notation λ=(A, B, π)

to represent the above complete parameter set of HMM.

The following are obvious constraints on the elements of an HMM.

 =1

 =1 for all i

 =1 for all i

 As each aij represents the probability P (/), the laws of

probability require that the values of the outgoing arcs from a given state

must sum to one. Same laws of probability apply to Initial Probabilities

and Output Emission Probabilities.

 The operations of an HMM are characterized by state sequence Q

and the observation sequence O.

Q = q1, q2, · · · , qT

O = o1, o2, · · · , oT

Q is a fixed state sequence of length T, and the corresponding

observation sequence is O. T is total number of observations in the

www.manaraa.com

10

observation sequence, and Ot is one of the symbols from V (Output

variables). Using an HMM, we can generate an observation sequence O =

o1, o2, . . ., oT,. We can also estimate the most probable state sequence

Q= (q1, q2, q3, . . . qt) given the set of observations O =(o1, o2, . . ., oT).

Here the observations are assumed to have statistical independence. The

Model has discrete observation (output) symbols. For an HMM to

perform all these, we need appropriate values of N, M, A, B, and π.

These values can be obtained by a learning process.

2.2 Problems of Hidden Markov Model

We can use HMMs to solve real problems with real data by solving these

three problems.

These problems are:

Problem 1-

Evaluation:

Given an observation sequence O and a model λ, what

is the probability of the observation sequence, P(O|λ)?

P(O|λ)= P(O1,O2,…, OT | λ) = ?

Problem 2-

Decoding:

Given an observation sequence O and the model λ,

what is the most probable state transition sequence Q

for O?

Q* = arg max Q=(q1, q2, …, qT) P(Q, O | λ) = ?

Problem 3-

Training:

Given a training sequence O, find a model λ, specified

by parameters (A, B, π) to maximize P(O|λ) (we

www.manaraa.com

11

assume for now that Q and V are known).

P (O | λ = (A, B ,π)) < P (O | λ ' = (A' , B ' ,π'))

λ* = argmaxλ P(O|λ)

Only the evaluation problem has a direct solution. The other

problems are harder and involve optimization techniques like dynamic

programming. There are specific algorithms for each problem that

explain the best way to solve them. The problem of evaluation is solved

using the Forward and Backward iterative algorithms. The second

problem is solved using the Viterbi Algorithm, also an iterative algorithm

that outputs the best path by sequentially considering each observation

symbol of O. The last problem which deals with training an HMM, can

be solved by using Baum-Welch or Maximum Likelihood Estimation

(MLE). The choice between these two algorithms can be made using the

training data available for the learning process.

We will now discuss in detail how these algorithms solve the three

problems associated with HMM. In each section, we will discuss

different algorithms that can be efficiently used to solve the problem.

Each algorithm is explained mathematically using equations that make

use of HMM notation, λ= (A, B, π). Also, all the operations of a HMM are

characterized by the hidden state sequence Q and the observation

sequence O that have the following denotations

Q = q1, q2, · · · , qT

O = o1, o2, · · · , oT

www.manaraa.com

12

where T is the number of observations in O.

2.2.1 Evaluation

Problem 1 is the evaluation problem. Given a model and a sequence of

observations, the question is how to compute the probability such that

the model produces the observation sequence? Here we are trying to see

how well a particular observation sequence matches the given model.

This is an extremely important point. If there is a situation where a

choice has to be made among several competing HMMs, the model that

best suits the observation sequence can be found using Evaluation.

The simplest way to solve the evaluation problem is by following

the Brute-Force approach. In this approach, we enumerate every state

sequence of length T (the number of observations), and calculate the

probability of each state sequence producing the given observation

sequence.

This approach, although theoretically useful, can lead to very long

computations as the number of computations required becomes

exponential. The computational complexity is O(NTT). Even if we have

small N and T, this is not feasible. For example, for N = 5 and T = 100,

~1072 computations are needed.

There is a more efficient procedure to solve Problem 1. It is called

Forward-Backward Procedure.

Forward Algorithm

www.manaraa.com

13

In this algorithm, the number of computations required is low. We

perform recursive evaluation, using an auxiliary variable αt(i), called the

forward variable.

αt(i), the probability of the partial observation sequence (until time t) and

internal state qt = Si given the model λ.

 αt(i) makes a recursive calculation possible because in a first-order

HMM, the transition and emission probabilities only depend on the

current state [6]. These recursive calculations reduce the number of

calculations needed to obtain P (O| λ).

We can solve αt(i) inductively as follows

Step 1: Initialization

α1(i) = , 1 ≤ i ≤ N

Step 2 : Induction

Figure 1: Operations for computing the forward variable αj (t + 1)

)|)()),(), . . . ,2(),1((()(it qtitOOOPi

www.manaraa.com

14

 Here we calculate αt+1(j), the next step, using the previous one αt(i).

αt+1(j) represents the probability of the observation sequence up to time t

+ 1 and being in state Sj at time t + 1.

 1 ≤ t ≤ T-1, 1 ≤ j ≤ N

 Note that we have to keep track of at(i) for all N possible internal

states. These values are used in the termination step.

Step 3: Termination:

Figure 2: αj(t) in terms of a lattice of observations and states

If we know αT(i) for all the possible states, we can calculate the

overall probability of the sequence given the model, P(O | λ)

N

i

ti jj Ot iabi
t

1

1)()(
1

N

i

T iOP
1

)()|(

www.manaraa.com

15

The forward algorithm allows us to calculate P(O|λ). As it can be

seen from the above algorithm, it has a computational complexity O(N2T).

This is linear in T, rather than exponential. This means that it is feasible

to implement. Apart from calculating P(O|λ), this algorithm is also used

in Baum Welch Algorithm for unsupervised learning.

Backward Algorithm:

The α values computed using the forward algorithms is sufficient

to solve the first problem, (O | λ). However, in order to solve the third

problem, we will need another set of probabilities β values. Similar to

forward variable, we define a backward variable, . We denote the

backward variable as the probability of the partial observation

sequence after time t, given state Si at time t

 = P (Ot+1, Ot+2 , …, OT |qt = Si, λ) , 1 ≤ t ≤ T, 1≤ i ≤ N

Just like α‟s, β's can also be computed using the following backward

recursive procedure:

Step 1: Initialization

The initialization step arbitrarily define to be 1 for all i.

 =1, 1 ≤ i ≤ N

This algorithm is backward in the sense that the time interval t is from T

to one.

Step 2: Induction

www.manaraa.com

16

Figure 3: Operations for computing the backward variable

Here we calculate , the next step, that makes use of the previous

step,

 =

 , t=T-1, T-2, . . . , 1 1 ≤ i ≤ N

In order to be in state Si at time t, and to account for the

observation sequence from time t+1 onwards, we have to consider all

possible states Sj at time t+1, accounting for the transition from Si to Sj

(aij), as well as observation Ot+1 in state j (), and then account

for the remaining partial observation sequence from state j() [1].

Step 3: Termination

Again the computation of , 1 ≤ t ≤ T, 1≤ i ≤ N require N2T

calculations.

N

i

iOp
1

1)()|(

www.manaraa.com

17

We will see later how the backward as well as the forward algorithms are

used to solve problems 2 and 3 of HMM.

2.2.2 Decoding

Problem 2 deals with decoding. In decoding, we attempt to uncover the

hidden part of the HMM. In other words, we try to find the optimal state

sequence for a given observation sequence. Unlike evaluation, in

decoding, there is no single optimal sequence. To get a correct solution,

we choose states that are individually most likely and then find the single

best state sequence that guarantees that the uncovered observation

sequence is valid. The most common solution to the decoding problem is

the Viterbi algorithm which also uses partial sequences and recursion.

Viterbi Algorithm:

The Viterbi algorithm is a dynamic programming algorithm that

computes the most likely state transition path given an observed

sequence of symbols. It is actually very similar to the forward algorithm,

except that we will be taking a “max”, rather than a “ ∑ “, over all the

possible ways to arrive at the current state under consideration.

However, the formal description of the algorithm involves some

cumbersome notations [11].

We need to define the following quantity for solving the problem

using Viterbi Algorithm.

)|, . . .,,, . . . ,,(max)(2121 tt

q
t oooiqqqPi

www.manaraa.com

18

δt(i) is the probability of the most probable path ending in state Si at

time t.

By induction, we have

To retrieve the state sequence, we need to keep track of the

argument that maximized , for each t and j. We use an array ψt(j)

for backtracking the state sequence.

The Viterbi Algorithm is as follows:

Step 1: Initialization

Step 2: Recursion

Step 3: Termination

P* gives the state-optimised probability

Q* is the optimal state sequence (Q* = {q1*,q2*,…,qT*})

Step 4: Backtrack State Sequence

)())((max)(11 tji jt
i

t obaij

Ni 1)()(11 obi ii

0)(1 i

)())((max)(1
1

tji jt
Ni

t obaij

))((maxarg)(1
1

i jt
Ni

t aij

NjTt 1,2

)(max
1

iP T
Ni

)(maxarg
1

iq T
Ni

T

1, . . . ,2,1 TTt)(11

 ttt qq

www.manaraa.com

19

Viterbi algorithm is similar to Forward algorithm except for the

backtracking step and the maximization over previous states instead of

summation. So, the time complexity is O(N2T). We can use a trellis

structure to properly explain the Viterbi Algorithm.

2.2.3 Training

The problem 3 in HMM is training to obtain the most likely parameters

that best models a system, given a set of sequences that originated from

this system.

There is no known way to analytically solve for the model that

maximizes the probability of the observation sequence(s). So, we come

up with models λ = (A, B, π) which locally maximizes P(O).

 HMM = Topology + Statistical parameters

During the training process, we compute the statistical parameters

of the HMM. The topology is already designed. So, the input to a

training algorithm would be a database of sample HMM behaviour, and

the output is the transition, emission, and initial probability distribution

of HMM. Thus, we can conclude that given a set of examples from a

process, we should be able to estimate the model parameters λ = (A,B, π)

that best describe that process.

 There are two standard approaches to the learning task based on

the form of the examples (database available for learning process),

supervised and unsupervised training. If the training examples contain

both the inputs and outputs of a process, we can perform supervised

www.manaraa.com

20

training. It is done by equating inputs to observations and outputs to

states. But if only the inputs are provided in the training data, we must

use unsupervised training. Unsupervised training guesses a model that

may have produced those observations. Maximum Likelihood Estimation

(MLE) comes under supervised training, and Baum-Welch Algorithm

comes under supervised training.

Supervised Learning:

The easiest solution for creating a model λ is to have a large corpus

of training examples, each annotated with the correct classification. If

we have such tagged training data, we use the approach of supervised

training. In supervised learning, we count frequencies of transmissions

and emissions to estimate the transmission and emission probabilities of

the model λ.

Maximum Likelihood Estimation (MLE):

MLE is a supervised learning algorithm. In MLE, we estimate the

parameters of the model by counting the events in the training data.

This is possible because the training examples for a MLE contain both

the inputs and outputs of a process. So, we can equate inputs to

observations and outputs to states, and we easily obtain the counts of

emissions and transitions. These counts can be used to estimate the

model parameters that represent the process.

aij =

www.manaraa.com

21

bi () =

There is a possibility of aij or bi() being zero. For example,

consider the case where state si is not visited by the sample training

data. Then aij=0. In practice, when estimating an HMM from counts, it

is usually necessary to apply smoothing in order to avoid zero counts

and improve the performance of the model on data not appearing in the

training set.

 Unsupervised learning:

Key idea of unsupervised learning is iterative improvement of

model parameters. We can use iterative expectation-maximization

algorithm, Baum-Welch, to find local maximum of P (O | λ). Baum-

Welch algorithm uses the forward and backward algorithms to calculate

the auxiliary variables α and β.

B-W algorithm is a special case of the EM algorithm:

 E-step: calculation of and

 M-step: iterative calculation of

E-step :

In order to describe the procedure for solving the problem, we need

to first define

www.manaraa.com

22

 is the probability of being in state Sj at time t, and state Sj at time

t+1, given λ, O.

 = P (= | O, λ)

 is the probability of being in state Si at time t for a given observation

sequence O and model λ.

Figure 4: Operations for computing

We can relate and by summing over j

M-step:

 = expected number of transitions from state Si to Sj

 = expected number of transitions from Si to Sj.

Using these formulas, we can re-estimate the parameters of an HMM.

 , the expected frequency of state i at time t=1

N

j

tt jii
1

),()(

)(ˆ
1 i

www.manaraa.com

23

 , ratio of expected number of transitions from state i to j

over expected number of transitions from state i

 , ratio of expected number of times in state j observing

symbol k over expected number of times in state j.

We may face some numerical problems while dealing with long

observation sequences that have to be solved using scaling.

 2.3 Example of Hidden Markov Model

Example 1: Coin Tossing Experiment

Consider the coin tossing experiment of Markov Models. But here

the person on the other side of the curtain has several coins both biased

and un-biased with him. He selects one of his several coins, and tosses

it. Then the person tells us the outcome (H, T), but not the coin selected.

He does this several times, and the outcome obtained after each trial is

recorded as an observation. Here the coins will be the hidden states, and

H, T are the observations.

Figure 5: HMM-Coin Tossing Experiment

)(

),(
ˆ

i

ji
a

t

t

ij

)(

)(
)(ˆ

,

j

j
kb

t

kot t

j
t

www.manaraa.com

24

We make an assumption that the person has three coins, and he chooses

one among these three, based on some probabilistic event [4].

www.manaraa.com

25

CHAPTER 3

TOPIC DETECTION AND TRACKING USING HIDDEN MARKOV MODEL

Text Detection and Tracking is used to develop algorithms for discovering

and grouping together topically related material in streams of data such

as newswire and broadcast news [5]. In this thesis we use Hidden

Markov Models (HMMs) to solve the problem of tracking a changing topic.

 In this model hidden states are the topics and the observations

are words. Our HMM is trained using some sample stories on several

events of interest (topics) and is used to automatically find the topic for

other stories. The input to the program will be a stream of words, first

on one topic, then on another topic, and so on. The goal is to identify the

topic of each of these words and segment the stream of text into blocks

based on the topic identified. In a document, for the given sentence

sequence, the HMM aims to find the most likely topic sequence.

The main components of this program are the following:

 Building an HMM from training data;

 Implementing the Viterbi algorithm for finding the most likely

sequence of states using the HMM built from training data; and

 Running the code on several test datasets and exploring its

performance.

3.1 Building an HMM from data

The first step in implementing our model is building an HMM from

training data. This training data is a stream of words collected from

www.manaraa.com

26

sources which cannot be directly used in our model. In order to use it in

our model we have to pre process it. Several preprocessing techniques

like Tokenizing, Parsing, and Stemming are applied on training data

before using it in our Model. This preprocessed data is now fed as input

to our model.

Using the preprocessed data as input we train our model. The

output of this learning process are the five parameters of the HMM, (S, V,

π, A, B)

S: States in the Hidden Markov Model

We denote the individual states as S1, S2, S3, …, Sn.

S = {S1, S2, S3, …, Sn }

The data set we used in the experiment is categorized into six groups or

topics which form the states of our HMM.

V: Distinct symbols observable in states.

We denote the individual states as v1, v2, v3, …, vM

V = { v1, v2, v3, …, vM }

List of output symbols is list of significant terms obtained after

preprocessing the training data.

We estimate the other parameters of our model using Maximum

Likelihood Estimate (MLE) described in section 2.

Three sets of probabilities calculated using MLE are:

 A: State transition probability distribution

A={ aij }. aij stores the probability of state j following state i.

www.manaraa.com

27

 aij= P(qt=Sj/qt-1 = Si), i ≥1 and j ≥ N

aij, the probability of moving from state Si to Sj at time t

 B: Observation symbol probability distribution

B = { bj(k) } is the output symbol array that stores the probability of

an observation vk being produced from the state j, independent of

time t.

 B = { bj(k) } , bj(k) = P(xt = vk/qt = Sj) 1≤ j ≤ N and 1≤ k ≤ M

 Bj(k), the probability of emitting symbol vk when state Sj is entered

at time t

 π: Initial state distribution

π = { Πi } is the initial probability array that stores the probability

of the system starting at state i in an observation.

π = { Πi }, Πi = P (q1 = Si), 1≤ i ≤ N

We will compute probability estimates of these three parameters

from the training data…Training data consists of one or more sequences

of state-output pairs, During this training phase, we assume that the

state variables are visible. Given these sequences, we estimate the

probabilities that define the HMM using Maximum Likelihood

Estimation.

www.manaraa.com

28

We estimate the observation symbol probabilities (bi(k)), the

probability of emitting symbol vk in state si in the following manner. We

count the number of times state s emits output symbol vk in the given

data, and divide it by a normalization constant so that the sum of all the

output probabilities from state si adds up to one. In our case, we used

the normalization constant to be the number of times state s appears in

the data.

N(k,i): Number of times state si has seen output symbol k

N(s): Number of occurrences of state si

V: entire vocabulary (all output symbols)

bi(k) = P(k|i) = N(k,i) / N(i)

When we are making estimates of this sort, there is a need to use

smoothing techniques to smooth the probability estimates. The reason is

sparse training data causes poor probability estimates that is, unseen

probabilities have emission probabilities of zero.

To see what this means and understand the need to use smoothing

let us consider an example of flipping a coin. Assume the probability of

heads is p, p is unknown, and our goal is to estimate the value of p. This

can be calculated by counting the number of times the coin came up

heads and divide it by the total number of coin flips. If the coin is flipped

1000 times and it shows heads 367 times then the value of p is 0.367.

However, if we flip the coin 2 times and we get tails both the times the

value of p is 0. It is not reasonable to assume that the coin will always

www.manaraa.com

29

come up with heads. To avoid such situations arising from sparse

training data we applied Laplace smoothing to our model.

Laplace smoothing is a simple smoothing technique in which we

add pseudo counts to all word frequencies to move them towards

uniform distribution. The result is all the unseen words have equal non-

zero probabilities.

Mathematically Laplace smoothing can be described as follows:

N(k,i): Number of times state i has seen output symbol k

N(s): Number of occurrences of state i

V: entire vocabulary (all output symbols)

 bi(k) = P(k|i) = (N(k,i) + 1) / (N(i) + |V|)

In the above example p would be

p = (1+ Number of heads) / (2 + Number of flips)= (1+0) / (2+2) = 0.25

Another advantage of Laplace smoothing is that it avoids

estimating any probabilities to be zero, even for events never observed in

the data. For HMMs, this is important since zero probabilities can be

problematic for some algorithms.

We estimate the probability of transition from one state to another

in the following manner. To calculate the transition probability from

state si to state sj we count the number of transitions from si to sj and

divide it by the total number of transitions from state si. Laplace-

smoothed estimates should also be applied on the transition probabilities

www.manaraa.com

30

from one state to another. After accommodating this change the formula

for transition probabilities is

N(si , sj): Number of times we move from state si to state sj

N(si): Number of transitions from state si

V: entire vocabulary (all output symbols)

aij = P(qt = sj / qt-1 = si) = (N(si , sj) + 1) / (N(si) + |V|)

To estimate the probability of starting from a state (Πi) in an

observation sequence we count the number of times our input started

from a state say si and divide it by total number the number of input

sequences in training data.

Πi , the probability of being in state I at time t=1

N(s1): Number of times we start from state s

N: Number of input sequences

Πi = N(si) / N

The HMM parameters computed from the MLE are written into a model

file.

3.2. Finding the most likely state sequence

The second part of the thesis is to compute the most probable sequence

of states for a given sequence of outputs using the HMM that we built

from the training data. This is done by implementing the Viterbi

algorithm (described in section 2) on the HMM model generated from

training data.

www.manaraa.com

31

Viterbi algorithm will be provided with the output part of the state

– output pairs from the test sequences. This output part of the test

sequence and the HMM model generated from previous step are used to

calculate the most likely state sequence to have produced such an

output sequence. Estimated state sequence is compared with the state

part of the test sequence. A clear explanation of Viterbi algorithm is

provided in section 2. The functions used and the steps involved in

implementing this step is described in detail in section 3.

Viterbi algorithm involves multiplying many probabilities together.

Since each of these numbers is less than one, we can end up working

with numbers that are tiny enough to be indistinguishable from zero by a

real computer. To avoid this we worked with log of probabilities. For

instance, if we need to calculate product pq of probabilities p and q, we

would instead compute log of their product simply by adding their

logarithms using the rule.

 log(pq) = log(p) + log(q).

3.3. Exploring performance on actual datasets

After completion of step 2 we evaluate the performance of our model on

the test data set from data collection. The performance of text detection

and tracking model built is evaluated based on standard precision, recall

and F1 values.

www.manaraa.com

32

CHAPTER 4

IMPLEMENTATION

To perform Text Detection and Tracking, we collected a set of 5302

articles from six newsgroups on six different topics, namely

rec.sports.baseball, rec.auto, talk.politics.guns, sci.med,

talk.religion.misc, and comp.os.ms-windows.misc. They can be

categorized into six topics: baseball, cars, guns, medicine, religion, and

windows. These topics become the six hidden states of our model.

Document in the data set should be preprocessed before giving it as

input to our model. Out of the 5302 documents present in the data set,

we used 1500 articles in testing and the rest in training.

4.1 Documents Preprocessing

All the documents are organized into folders based on their categories,

which are based on the topic they belong to. They need to be converted

into a stream of text tagged to their corresponding topic. Initially, all

training documents are parsed to convert all letters to lower case, and to

remove the punctuations by converting them to white space. All the

special characters are also converted to white space. Once the

documents are parsed, they should be tokenized.

Tokenization is the process of breaking parsed text into pieces,

called tokens. For example, consider the sentence "Although there was

inflation, at least the economy worked," from a document that belongs to

category Trade tokenized as shown in Table 4.3.

www.manaraa.com

33

Although

There

Was

Inflation

At

Least

The

Economy

Worked

Table 1: List of tokens

Next step after tokenization is removing stop words. Common

words such as 'are', 'the', 'with', 'from', etc. that occur in almost all

documents, do not help in deciding if a document belongs to a category.

Such words are referred to as stop words. So, these words can be

removed by forming a list of stop words. This thesis works on a total of

416 stop words. Once stop words are removed, next step performed is

stemming.

Stemming refers to the process of reducing terms to their stems or

root variant. For example, “computer”, “computing”, and “compute” are

reduced to “comput”, and “engineering”, “engineered”, and “engineer” are

reduced to “engine”. The main advantage of using stemming is to

reduce the computing time and space as different forms of words are

stemmed to a single word. The most popular stemmer in English is the

Martin Porter's stemming algorithm shown to be empirically effective in

www.manaraa.com

34

many cases. It is implemented in various programming languages which

are available for free. This thesis works on stemming algorithm

programmed by porter in java [6]. After stemming all terms, the next

step is to build a list of output variables from this list of terms.

We store the values of output variables, their term count, and

document count using linked hash maps and tree set. Tree set is used

to store the list of output variables. We use two hash maps to store

document frequency and term frequency of output variables.

Consider a simple example with three documents, D1, D2, and D3.

D1: “it is an apple”

D2: “apple is in the basket”

D3: “it is a banana”

The tree set built is as shown in Table 2.

Term

Apple

Basket

Banana

Table 2: A record level inverted index file

In this thesis, we build document frequencies and term frequencies to

figure out significant terms in the collection. Document frequency is

defined as the number of documents that contain a particular term.

www.manaraa.com

35

Term frequency is defined as the number of times that a particular term

occurs in the collection. Consider the above example for which the

document frequencies are shown in Table 4.5. The document frequency

for the term “apple” is 2 because it occurs in two documents D1 and D2.

Term Document
Frequency

apple 2

basket 1

banana 1

Table 3: Terms with their document frequencies

A major difficulty of text detection and tracking problem is the high

dimensionality of feature space, i.e., the total number of output symbols.

Even for a moderate-sized text collection, there are hundreds of

thousands of unique terms [7]. So, our concentration is to reduce the

number of terms in the collection, known as dimensionality reduction.

There are many known methods to perform dimensionality reduction.

This thesis works on term selection based on document frequency

thresholding. Document frequency thresholding is the simplest

dimensionality reduction technique used for reducing vocabulary in the

collection. This is carried out based on a predefined threshold value

such that only those terms are removed from the collection that are less

than the given threshold value.

www.manaraa.com

36

This thesis concentrates only on those terms whose document

frequency is greater than three and less than the number of training

documents subtracted by 3, and excludes the remaining terms.

Suppose, if document frequency is less than three, then those terms are

considered as rare terms as they appear in fewer documents. Basically,

the rare terms are considered to be non-informative for category

prediction in global performance and hence can be removed [6]. If some

terms have very high document frequency, it means that those terms

occur in most of the document collection. So, based on those terms, one

cannot distinguish between two documents, and hence can be removed.

Significant terms obtained from the above step form the output

symbols of HMM. The next step is to remove other terms from the

document collection. All the files in the document collection are

compared with the output symbols, and the words that do not belong to

this set of output symbols are removed from the collection.

The resulting documents, after preprocessing, contain only the

output symbols. These output symbols are tagged according to the

category to which they belong. The 5302 articles, classified into several

sets of categories, were then randomly permuted and concatenated

together forming a sequence of states (topics) and outputs (words).

After preprocessing the data and converting it into a format

required by our program, the next step is to develop a model to solve our

www.manaraa.com

37

problem and test its efficiency. The problem can now be divided into two

phases. They are:

 Training phase and

 Test phase or Text Detection and Tracking phase.

4.2 Training Phase

Out of the 5306 present in the document collection, we are using 3806

documents for training. Our HMM is trained using stories on several

events of interest (topics) from the test set. The goal of this phase is to

build an HMM using preprocessed training data as input. The output of

this learning process is the five parameters of the HMM, (S, V, π, A, B).

States in the Hidden Markov Model: S:

We denote the individual states as S1, S2, S3, …, Sn.

The six topics into which the data set can be categorized become the six

hidden states of our model. Each state is represented by an integer in

the range 0 (inclusive) to number of states (exclusive). Hence the

individual states in our HMM model are

S = {0, 1, 2, 3, 4, 5}.

Distinct symbols observable in states: V

We denote the individual states as v1, v2, v3, …, vM

V = { v1, v2, v3, …, vM }

List of output symbols is a list of significant terms obtained after

preprocessing the training data.

www.manaraa.com

38

We estimate the other parameters of our model using Maximum

Likelihood Estimate (MLE) described in Section 2.

Three sets of probabilities calculated using MLE are:

State transition probability distribution A

A={aij }: aij stores the probability of state j following state i.

N(si , sj): Number of times we move from state si to state sj

N(si): Number of transitions from state si.

V: entire vocabulary (all output symbols).

aij = P(qt = sj / qt-1 = si) = (N(si , sj) + 1) / (N(si) + N), i ≥1 and j ≥ N.

Transition probability matrix in our HMM model is a 6 by 6 array. It

gives the probability of changing from one particular topic to another.

Observation symbol probability distribution: B

B = {bj(k)} is the output symbol array that stores the probability of an

observation vk being produced from the state j, independent of time t.

B = {bj(k)} , bi(k) = P(xt = vk/qt = Sj) 1≤ j ≤ N and 1≤ k ≤ M.

N(k,i): Number of times state i has seen output symbol k.

N(s): Number of occurrences of state i.

V: entire vocabulary (all output symbols)

 bi(k) = P(k|i) = (N(k,i) + 1) / (N(i) + |V|)

Initial state distribution: Π

Π= {Πi} is the initial probability array that stores the probability of the

system starting at state si in an observation.

π = {Πi}, Πi = P (q1 = Si), 1≤ i ≤ N

www.manaraa.com

39

Πi , the probability of being in state si at time t=1.

N(si): Number of times we start from state si.

N: Number of input sequences.

Πi = N(si) / N

Initial state probability matrix in our HMM model is an array of length 6.

It gives the probability for every particular topic to be the first topic in a

sequence.

In our program, we used CountSequence and UpdateParameter

functions to compute the initial state probabilities, transition

probabilities, and observation symbol probabilities, given tagged

sequences of pre-processed training data.

CountSequence:

In CountSequence following counts are accumulated:

- number of times it starts with state i

- number of times a particular transition happens

- number of times a particular symbol would be generated from a

particular state

For each value in the training file, we do the following:

Step 1: Read the output variable into sym variable and the state to which

it is tagged into s variable.

www.manaraa.com

40

Figure 6: Reading Training data into variables

Step 2:

After reading into sym and s variables, make corresponding changes in

the counts.

Update Parameters:

Using the counts obtained from CountSequence function, compute

initial state probabilities, emission probabilities, and transition

probabilities.

www.manaraa.com

41

Figure 7: Calculating Probabilities.

The output of this phase is the parameters of HMM which are

written into a model file. A model file obtained for the training data used

in our case looks like the following:

Figure 8: Model file

www.manaraa.com

42

The first table in the model file shows the probability of each of the

states being a start state. The second table shows the probability of

transitioning from each state to every other state. The third table shows

the probability of each output symbol seen in each state.

We use the HMM model generated from the training data to

compute the most probable sequence of states for a given test sequence,

which is a sequence of outputs.

4.3. Testing phase

In the testing phase, we evaluate the performance of our model using the

test data set from data collection. The goal of this phase is to compute

the most probable sequence of states for a given sequence of outputs

using the HMM that we built from the training data. This is done by

implementing the Viterbi algorithm on the HMM model generated from

training data.

Viterbi algorithm will be provided with the output part of the state-

output pairs from the test sequences and the HMM model generated from

previous step is used to calculate the most likely state sequence to have

produced such an output sequence. Estimated state sequence is

compared with the state part of the test sequence to evaluate the

performance of our model.

In our program, we used the functions ComputeStep and Decode

to compute the most probable state sequence matching given observation

sequence (given an HMM). A trackback is used to detect the maximum

www.manaraa.com

43

probability path travelled by the algorithm. The probability of travelling

such sequence is also computed in the process.

Implementation:

Step 1:

Figure 9: Viterbi Algorithm-Initialization-code snippet.

In this step, we initialize variables δ and Ψ stored in delta[T][N] and

psy[T][N], respectively.

Step 2:

Compute Step

www.manaraa.com

44

Figure 10: Viterbi Algorithm Compute Step

In this function, we compute δ and Ψ values. Using these values, we

compute the most probable state sequence.

Step 3: Termination

Figure 11: Viterbi Algorithm-termination code snippet

www.manaraa.com

45

StateSequence array stores the most probable state sequence.

The output of a HMM is a tagged sequence file which looks like this

Figure 12: screen shot of tagged sequence file

We conclude this chapter by describing our model in terms of HMM

Parameters.

4.4 Representation of TDT HMM Model

In HMM for Text Detection and Tracking, the vocabulary is the output

variables obtained from the training data after pre-processing. These

output variables are written into “OutputVariables.txt” file. So, the

vocabulary consists of all the tokens in the OutputVariables.txt file.

www.manaraa.com

46

Figure 13: Graphical representation of TDT HMM

The number of states is stored in a variable N. This HMM has 6

states baseball, religion, cars, medicine, guns, and Windows. Each state

is represented with a number.

S= { 0, 1, 2, 3, 4, 5, 6 } are the states,

Baseball is state 0

Religion is state 1

Cars is state 2

Medicine is state 3

Guns is state 4

Windows is state 5

The 6-state HMM for TDT is represented by the following arrays:

1. Initial state probability (I)

Baseball

X

Medicine

Cars

Windows

Religion

Guns

www.manaraa.com

47

I is an array of length 6 (0-indexed), with I[s] representing the

initial probability of the starting the observation sequence with

a particular topic (state).

2. State transition probability matrix (A)

A is a 0-indexed two-dimensional array (6x6), with A[i][j]

representing the probability of going from one topic (state j) to

the other topic (state i).

3. Output probability matrix (B)

B is a 0-indexed two-dimensional array (Mx6), with B[o][s]

representing the probability of a particular topic(state s)

generating output variable "o". M is the number of tokens in the

OutputVariables.txt file.

Note that the observed variable “o” cannot be used directly as an

index to access the entries of matrix B, each output variable is indexed to

a number, and the number is used to access the corresponding entries.

 4.4.1 HMM Representation on the disk file

An HMM can be encoded as a text file. The syntax is very simple.

Below is the model file for the HMM implemented in our thesis.

www.manaraa.com

48

Figure 14: Model file for TDT HMM

In the Model file, the first number is the number of states. The

keyword “InitPr” represents Initial Probabilities, “TransPr” represents

Transition Probabilites, and “OutputPr” represents Output Emission

Probabilities. The number after each keyword is the number of entries

following it that should be associated with this keyword.

Model file and sequence files are the inputs and outputs of HMM,

respectively.

Model file is generated as the output of the training phase. We use

the HMM model generated from the training data to compute the most

probable sequence of states for a given test sequence.

www.manaraa.com

49

CHAPTER 5

DATA AND EXPERIMENTAL RESULTS

To perform Text Detection and Tracking, we collected a set of 5302

articles from six newsgroups: rec.sports.baseball, rec.auto,

talk.politics.guns, sci.med, talk.religion.misc, and comp.os.ms-

windows.misc. They can be categorized into six topics: baseball, cars,

guns, medicine, religion, and windows. The training data is further

formatted by applying several preprocessing techniques. Preprocessing

techniques include the following: parsing the documents to remove all

punctuation marks by converting them into white spaces, converting all

letters to lower case, converting the text into tokens, removing stop

words, and stemming and dimensionality reduction. The resulting

documents after preprocessing contain only the output symbols. These

output symbols are tagged according to the category to which they

belong. The 5302 articles, classified into several sets of categories are

then randomly permuted and concatenated together forming a sequence

of states (topics) and outputs (words). A state in this problem is an

underlying topic. An output is an actual word appearing in the text.

Out of the 5302 documents in the data set,1500 articles were used

in testing, the rest in training.

During the testing phase, based on the experience from the

training data, the model must track and detect the change of topic in the

new unseen stream of text. A model associates terms in the test

www.manaraa.com

50

document with the most likely states based on Viterbi algorithm

described in section 2.

After detecting and tracking the change of topic in test data, we

calculate precision and recall values for the outputs generated by the

model. Precision and recall are calculated to evaluate the performance of

our model. In the following section, we define precision, recall, and F1,

then present the results obtained on our test data.

5.1. Precision and Recall

The performance of text detection and tracking model built is evaluated

based on standard precision, recall, and F1 values. Precision, recall, and

F1 values are calculated on the test data from the collection.

 Let TP be the number of true positives, i.e., the number of

documents that both experts and the model agreed as belonging to the

same category. Let FP be the number of false positives, i.e., the number

of documents that are wrongly categorized by the model as belonging to

that category.

Precision is defined as:

Precision value obtained for our test data was 95%.

Let FN be the number of false negatives, that is, the number of

documents that are not labeled as belonging to the category but should

have been.

Recall is defined as:

www.manaraa.com

51

Recall value obtained for our test data is 96%

The harmonic mean of precision and recall is called the F1

measure, and is defined as [24]:

F1 value obtained for our test data was 95 %.

www.manaraa.com

52

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis research, we have demonstrated the effectiveness of HMMs

for topic tracking and segmentation. After running our model on a

collection of 1500 test documents, the precision and recall values were

calculated as reported in Chapter 5. From these values, it can be

concluded that this is an efficient tool to perform Topic Detection and

Tracking. We used smoothing to reduce the problems caused by sparse

training data. We used scaling to handle multiplication of large

observation sequences that helped improve the performance of HMM.

So, we can conclude that our HMM can handle issues, like large

observation sequences as well as sparse training data.

In this thesis, we worked on news articles from newsgroups. As a

future work, one can evaluate performance of HMM using speech

recognition output. We used a small training data set of 5036

documents. This work can be extended by training and testing the

model built on large document collections determining their precision

and recall values. Also, this model can be compared with the various

Text Detection and Tracking tools that are available to determine the

models that perform better in a commercial environment.

www.manaraa.com

53

BIBLIOGRAGHY

1. Wikipedia, the free Encyclopedia, Data Mining,

http://en.wikipedia.org/wiki/Data_mining

2. Machine Learning. The Free On-line Dictionary of computing

http://encyclopedia.thefreedictionary.com/Machine+learning+algorithm

3. Wikipedia, the free Encyclopedia, Machine Learning,

http://en.wikipedia.org/wiki/Machine_learning

4. Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition

5. Topic Detection and Tracking by. Omid Dadgar

6. Martin Porter, „The Porter Stemming Algorithm‟

7. http://tartarus.org/~martin/PorterStemmer/

8. Yiming Yang, Jan O. Pederson, „A comparative study on feature selection

in text categorization‟.

http://net.pku.edu.cn/~course/cs502/2003/031119/yang97comparativ

e.pdf

9. Hidden Markov Models by Marc Sobel

10. Wikipedia, the free Encyclopedia, Precision and Recall,

http://en.wikipedia.org/wiki/Precision_and_recall

11. Hidden Markov Models by John Fry, San Jose State University

12. A Brief Note on the Hidden Markov Models (HMMs) by ChengXiang

Zhai

http://en.wikipedia.org/wiki/Precision_and_recall

www.manaraa.com

54

13. Wikipedia, the free Encyclopedia, Hidden Markov Models,

http://en.wikipedia.org/wiki/Hidden_Markov_model

www.manaraa.com

55

VITA

Graduate College
University of Nevada, Las Vegas

Aditya Sowmya Tatavarty

Degrees:

 Bachelor of Technology, Computer Science, 2009

 Jawaharlal Nehru Technological University.

Thesis Title: Topic Detection and Tracking Using Hidden Markov Models

Thesis Examination Committee:

Chairperson, Dr. Kazem Taghva, Phd.

Committee Member, Dr. Ajoy K. Datta, Phd.

Committee Member, Dr. Laxmi P. Gewali, Phd.

Graduate College Representative, Dr. Venkatesan Muthukumar,

Phd.

	Topic detection and tracking using hidden Markov models
	Repository Citation

	tmp.1316818574.pdf.kVw7H

